
Generative Malware
Outbreak Detection
Sean Park, Iqbal Gondal, Joarder Kamruzzaman, Jon Oliver

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general informa-

tion and educational purposes only. It is not intended and

should not be construed to constitute legal advice. The

information contained herein may not be applicable to all

situations and may not reflect the most current situation.

Nothing contained herein should be relied on or acted

upon without the benefit of legal advice based on the

particular facts and circumstances presented and nothing

herein should be construed otherwise. Trend Micro re-

serves the right to modify the contents of this document at

any time without prior notice.

Translations of any material into other languages are in-

tended solely as a convenience. Translation accuracy is

not guaranteed nor implied. If any questions arise related

to the accuracy of a translation, please refer to the original

language official version of the document. Any discrepan-

cies or differences created in the translation are not bind-

ing and have no legal effect for compliance or enforcement

purposes.

Although Trend Micro uses reasonable efforts to include

accurate and up-to-date information herein, Trend Micro

makes no warranties or representations of any kind as to

its accuracy, currency, or completeness. You agree that

access to and use of and reliance on this document and

the content thereof is at your own risk. Trend Micro dis-

claims all warranties of any kind, express or implied. Nei-

ther Trend Micro nor any party involved in creating, pro-

ducing, or delivering this document shall be liable for any

consequence, loss, or damage, including direct, indirect,

special, consequential, loss of business profits, or special

damages, whatsoever arising out of access to, use of, or

inability to use, or in connection with the use of this doc-

ument, or any errors or omissions in the content thereof.

Use of this information constitutes acceptance for use in

an “as is” condition.

© ️ 2019 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional

purposes, creating new collective works, for resale or re-

distribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

Published by:

Trend Micro Research

Written by:

Sean Park
Trend Micro Research

Iqbal Gondal
Federation University Australia

Joarder Kamruzzaman
Federation University Australia

Jon Oliver
Trend Micro Research

Stock images used under license from

Shutterstock.com

Contents

I. Introduction

04

II. Related Works

06

III. Method

07

IV. Evaluation

12

V. Conclusion

17

Abstract

Recently, several deep learning approaches have been attempted

to detect malware binaries using convolutional neural networks

and stacked deep autoencoders. Although such approaches have

shown satisfactory performance on a large corpus of dataset,

practical defense systems require precise detection during malware

outbreaks where only a handful of samples are available. This

paper demonstrates the effectiveness of the latent representations

obtained through the adversarial autoencoder for malware outbreak

detection. Using instruction sequence distribution mapped to a

semantic latent vector, this model provides a highly effective neural

signature that helps detect variants of a previously identified malware

within a campaign that have mutated with minor functional upgrades,

underwent function shuffling, or have slightly modified obfuscations.

This method demonstrates how adversarial autoencoder can turn

a multiclass classification task into a clustering problem when

the sample set size is limited and the distribution is biased. The

model performance is evaluated on OS X malware dataset against

traditional machine learning models.

4 | Generative Malware Outbreak Detection

I. Introduction
Statically identifying malware has been the most viable approach when timely detection is critical. This

is especially true under a current threat environment where malware outbreaks have become part of the

daily routine. This paper considers static features for malware detection. The malware packing problem1

is crucial when the objective is to reverse engineer the detailed functional characteristics of a given

malware. However, when the sole objective is to detect malware, its surface-level static features are

sufficient to differentiate malware families from benign samples. Therefore, this paper does not attempt

to propose a method to unpack malware samples.

An observation in the malware battlefront is that malware mutates over time to bypass static signature-

based detection by either upgrading its functions or applying new metamorphic (or obfuscation)

techniques. The downside for attackers is that malware mutation requires time and effort to do. Due to

this developmental cost, minor tactical modification to the original malware code frequently occurs and

arrives in the form of an outbreak, while a major strategic code change rarely occurs across a longer

period of time. This inevitably causes a similar pattern of instruction sequence that is either generated by

a metamorphic engine or upgraded from previous functions. As a result, there appears a phenomenon

typically seen in the instruction sequence of malware samples from a campaign, as shown in Figure 1. The

method used in this paper will exploit the presence of this unique pattern of instruction sequence in the

malware samples of a campaign to determine whether or not it forms unpacking routines, metamorphic

components, or pure functional modification.

Traditional machine learning algorithms such as Support Vector Machine (SVM), Random Forest, and

Gradient Boosting commonly use metadata as features, such as executable file header fields, n-gram of

raw binary file, and entropy of sections, because they are optimized to work with independent and sparse

features. Meanwhile, encoded high-dimensional data — such as a sequence of program instructions —

constitutes the substantial body of a sample in the context of malware detection, as this contains rich

information of the sample’s identity. Although several attempts utilized the instruction sequence as a

feature,2, 3, 4, 5 the n-gram reduction they performed simply throws away the sequence order information,

leaving those approaches vulnerable to a trivial histogram matching attack.6 However, the adversarial

autoencoder used in this paper, like many other deep learning models, fully takes advantage of the input

samples with the sequence order retained. In this paper, we use the sequence of program instructions as

a feature.

5 | Generative Malware Outbreak Detection

One critical aspect of malware outbreak detection is the scarce number of samples we can train our

systems with. The goal of this research is to introduce a method that not only detects malware variants

but also detects them with an extremely small number of samples captured at the very early outbreak —

as what occurs in a real-world malware detection scenario. This method, as well as various other machine

learning models, will be evaluated with this scarce training dataset setting.

This paper presents a novel method that detects similar malware samples with high accuracy for malicious

samples and low false positives for benign samples, using a single sample for training with adversarial

autoencoder. The techniques described in this paper are applicable to other domains, such as the internet

of things (IoT), that require well-generalized detection using a handful of malware samples.

6 | Generative Malware Outbreak Detection

II. Related Works
For binary malware classification, Joshua Saxe and Konstantin Berlin used fully connected layers with

dropouts over handcrafted independent sparse features from an executable file.7 The approach does not

deal well with complex variations of metamorphism especially when the changes occur globally within the

sample, let alone when the binary classification significantly overfits the limited number of training samples.

Yuancheng Li et al recorded 92.1% accuracy over a binary classification problem with experimental data

from KDDCUP ‘99 dataset using a stacked RBM (Restricted Boltzmann Machine) autoencoder combined

with softmax regression.8 Although the method did not use layer-wise noises for the autoencoder and the

dataset consisted of handcrafted sparse features, the efficacy of using autoencoder was demonstrated.

Eli (Omid) David and Nathan Netanyahu demonstrated the use of DBN (Deep Belief Network) for malware

detection over a relatively concentrated number of target classes.9 George Dahl et al tried to solve the

malware classification problem using DBN with 136 malware family categories as output classes.10

However, it still used a sparse feature set. Using convolutional neural network, Andrew Davis and Matt

Wolff first adopted raw binary samples as features, which contain program codes inside.11 However,

the binary distribution of a malware outbreak can significantly vary depending on the packed code and

data. The layout of sections can also change with little effort from the attacker. Using highly structured

content such as an executable file as a sequence of raw bytes is less likely to generalize the distributions

of a malware and its variants. Park introduced a method to detect malware metamorphism using a

stacked de-noising autoencoder and semantic hashing on the features generated by Fourier transform

applied to the program instructions.12 Although the method used successfully captures intra-function

metamorphism, no sample-wise similarity detection approach was suggested.

The majority of these approaches use a large dataset with the assumption that the dataset has unbiased

distribution across different styles of samples. In addition, many approaches attempted to solve binary

classification problems, where samples are labeled in one of two classes. The proposed approach in this

paper attempts to solve multiclass classification problems by using unsupervised machine learning with

no assumptions on the number of training samples and sample distribution.

7 | Generative Malware Outbreak Detection

III. Method
This section discusses our dataset, its features, the model architecture, and training methods.

Figure 1. Visual analysis of three unique variants of MAC.OSX.CallMe family

Note: Each row represents a per-sample feature, which is a sequence of instructions of a malware sample. Each

normalized instruction is rendered as a vertical bar with a unique color to differentiate between different instructions.

The X-axis represents the feature while the Y-axis represents the sample number.

A. Features
In modern days, malware samples are automatically generated by a custom tool created by the attacker.

It renders hard-coded static signature-based detection obsolete. A run of automatic malware generation

tool essentially creates a batch of the functionally same malware in a different look, which can involve

different obfuscations such as dead code insertion,13, 14 register reassignment, code transposition, and

integration and control flow obfuscation. Nonetheless, the observation is the distribution of the program

instruction sequence remains relatively intact. Figure 1 shows three unique variants of MAC.OSX.CallMe

family. The samples in Figure 1 are described below.

MAC.OSX.CallMe.A (3 samples)

MAC.OSX.CallMe.E (1 sample)

MAC.OSX.CallMe.F (1 sample)

8 | Generative Malware Outbreak Detection

As shown in Figure 1, MAC.OSX.CallMe variants have identical instruction sequences until a variation

was introduced at approximately instruction 5250. Despite this variation, it is visually clear that parts of

instructions of sample 2 and sample 3 merely shifted from the instructions of the rest of the samples.

In short, the instruction sequences appear very similar to each other for these three MAC.OSX.CallMe

variants. A visual analysis of the majority of malware families shows that program instruction sequence

plays a significant role in identifying the variants during outbreaks.

Based on this observation, we therefore use the instruction sequence as the sole feature for the model

proposed in this paper. We describe the steps in constructing a feature vector for a sample and show

example values in Figure 2.

call 0x004017B1
push 0x5C
push 0x00401B40
call 0x004021A4

xor ebx, ebx
mov [ecx-0x1c], ebx
mov [ebp-0x4],ebx
lea eax, [ebp-0x6c]
ret

push eax
call 0x0041230EF

E8 87 FD FF FF
6A 5C
68 40 1B 40 00
E8 6E 07 00 00

33 DB
89 5D E4
89 5D FC
8D 45 94
C4

50
FF 15 14 11 40 00

E8
6A
6A
E8

33
89
89
8D
C4

6A
E8

E8
6A
6A
E8
33
89
89
8D
C4
6A
E8

Figure 2. Example values for each step of the feature extraction

1.	 Extract function-wise raw instruction bytes using IDA Pro:15 It is critical to extract the original raw

features. Failing that, sample distribution will change, which will significantly affect the clustering

result. In this paper, a list of function bytes are extracted from each malware sample using a custom

IDA Python script.

a.	 Create a sample by combining the extracted functions: Each individual data sample per malware

sample needs to be created. This is done by concatenating the functions present in the executable

file in the order they appear. A blind concatenation of functions is vulnerable to code transposition

and integration metamorphism.16 Overcoming this problem is later discussed in this section using

a model that contains a translation invariant property.

2.	 Map each instruction byte to a unique instruction ID: An instruction’s operands are ignored. For

example, both push 0x5C and push eax are mapped to a unique ID, 6A. Note that this unique ID

is computed using a custom table instead of being assigned directly from the instruction’s opcode

because the opcode in CPU architecture may include a portion of a byte or may span across multiple

bytes. The rationale for this preprocessing is that it reduces noises in the distribution while remaining

immune to several obfuscation techniques, such as register and memory reassignment (see Moser

et al).

9 | Generative Malware Outbreak Detection

B. Adversarial Autoencoder (AAE)
The model consists of two independent modules. First, the latent representation for the instruction

sequence feature that is resilient to metamorphism is acquired by adversarial autoencoder. Second, the

class number for the latent representation is computed via HDBSCAN with a predefined threshold.

Over the past few years, GAN (Generative Adversarial Network) has successfully demonstrated its

capability to understand the data distributions by generating realistic samples.17 The power of GAN

primarily comes from its generative nature by jointly training the generator and the discriminator in a

tight competitive loop. In a situation like malware outbreaks where a handful of samples are available,

adversarial autoencoder is a natural choice so that the scarce number of training samples produces

smooth approximated nearby distributions. The core architecture for malware outbreak detection in this

paper is borrowed from the original adversarial autoencoder, as seen in Figure 3.

E8
6A
E8
33
89
...

x q(z|x)

z~q(z)

p(x|z)

E8
6A
E8
33
89
...

p(x)

z~p(z) —

+

Figure 3. Adversarial autoencoder architecture used for malware outbreak detection

Note: The input, x, and the reconstructed input, p(x), have the instruction sequence feature.

Adversarial autoencoder essentially combines an arbitrary autoencoder with GAN. The autoencoder part

within the model must have two properties:

•	 The stacked weights are symmetric and shared between encoder and decoder. This is a compulsory

requirement to qualify as autoencoder.

•	 Encoder also functions as a generator; hence, it must have all of GAN’s generator properties as well.

Since encoder functions dually, it needs to conform to the training techniques used for the generator

while maintaining the autoencoder property.

10 | Generative Malware Outbreak Detection

During malware outbreaks, one of the desired detection properties is the ability to identify relocated

functions. Thus, the autoencoder used in the proposed model in this paper is a stacked convolutional

autoencoder that aims to take advantage of the translation invariant property of the architecture.18 This

allows the model to capture the program instruction sequence in the presence of code transposition and

integration metamorphism.19

The input vector consists of sparse discrete symbols, which are difficult to train with a stochastic gradient

descent. Therefore, we create an embedding lookup for the symbols and let the model find the best

representations for them during the training. This embedding layer nicely transforms a 1D input vector

into a 2D array, which can be fed as an input to this convolutional autoencoder. The reconstruction

method based on cosine similarity cross entropy is used to deal with sparse discrete input symbols.20

As outlined in a paper written by Alireza Makhzani et al,21 both the adversarial network and the autoencoder

are trained jointly with stochastic gradient descent in two phases — the reconstruction phase and the

regularization phase — and are then executed on each mini-batch. Specifically, in the reconstruction

phase, the model is trained by minimizing the cross entropy loss between the input symbol and the

decoder output via sigmoid activation. During the regularization phase, binary cross entropy is used

for the discriminator loss, which is computed by summing the loss between positive samples from the

Gaussian normal distribution and negative samples from the encoder output. Binary cross entropy is also

used for the generator loss. Let x be the one-hot encoded representation of input data distribution and z

be the latent code vector of autoencoder. Let p(z) be the prior distribution imposed on the codes, q(z|x)

be the encoding distribution, p(x|z) be the decoding distribution, and p(x) be the model’s reconstructed

distribution. Reconstruction loss is described in Formula (1), and discriminator and generator loss are

defined by Formula (2).

Ex[Eq(z|x)[—logp(x|z)]]1

minG maxD2
Ex~pdata [log D(x)] +

Ez~p(z) [log(1-D(G(z))]

Consensus optimization has been adopted to mitigate the instability caused by standard adversarial

autoencoder training. Mescheder showed that the simultaneous gradient descent used in GAN does not

generally converge to a Nash equilibrium in a non-cooperative minmax game.22 Mescheder proposed to

solve this by constructing a conservative vector field from the original using consensus optimization.23, 24

11 | Generative Malware Outbreak Detection

There are a number of hyperparameters that can be tuned in the network architecture, for example, how

much of diverse clusters you want to detect and what level of performance you need during prediction. In

terms of clustering behavior, the standard deviation of GAN’s Gaussian noise input generally affects the

total number of clusters that are detectable with accuracy. The wider the Gaussian normal distribution is,

the larger the number of clusters that the model will spread evenly. A large size latent vector increases

the accuracy of clustering. On the contrary, a large embedding size for an input symbol does not have a

significant impact on clustering accuracy.

In general, the convolutional autoencoder part of the network does not have much impact on accuracy,

but the increased number of convolutional layers can significantly reduce both training and prediction

speeds. A large convolutional filter window tends to produce less optimal results.

From a training perspective, batch normalization within the GAN generator is necessary to help generate

a consistent latent representation. The Adam optimizer was used for both the reconstruction and

regularization phases,25 while consensus optimization was performed with RMSProp.26 Some of the key

hyperparameters are shown below.

Latent representation dimension: 100

Input Gaussian noise standard deviation: 5.0

Embedding dimension: 4

Number of channels for each convolution layer: [1, 20, 20, 1]

Filter sizes: [3, 3, 3, 3]

Strides: [1, 2, 2, 1]

Maximum epochs: 100

Learning rate: 0.0001

Batch size: 20

When training is complete, the encoder output is taken as a latent vector that represents the input sample,

which will be used as an input used for semantic hashing.

C. Semantic Hashing
The latent representation obtained through adversarial autoencoder needs to be transformed into a class

number for prediction. First, the latent vector represented by real valued numbers are binarized using the

bitwise mean value of the training samples. The hamming distance is then used to compute the distance

for the two given latent vectors.27 Finally, a test sample is assigned a class with the closest training sample.

12 | Generative Malware Outbreak Detection

IV.	 Evaluation

A. Dataset
3,254 in-the-wild OS X malware samples collected from a proprietary source and 9,981 randomly chosen

benign OS X Mach-O samples were used for evaluation. A snapshot of the family distribution of 3,254

in-the-wild malware samples is shown in Figure 4. In order to simulate the outbreak situation, 175 out of

3,254 malicious samples that exhibited unique instruction sequence patterns were manually selected by

a human malware expert as core malicious training samples and were assigned a unique label for each

sample. Note that no benign samples were included in the training set.

Since there is no generic evaluation metric available in finding a core sample of a malware family that’s

based on instruction sequence, the instruction sequences of all 3,254 malicious samples were visually

explored to obtain the core sample of each family. The properties that are used to put samples in the

same category are summarized as follows:

500

1,000

1,500

2,000

-

APT2
8

Adloa
d
Age

nt

Blac
kh

ole

CVE-2
01

6-
46

25

Call
M

e

Car
et

o

Coin
Th

ief
Diple

Dow
nlo

ad
er

Fa
ke

Aler
t

Fa
vD

ow
nlo

ad
er

Fil
eC

od
er

Fla
sh

Bac
k

Fla
sh

bac
k

Fla
sh

fak
e

Fr
ee

ze
r

Fr
uit
fly

Get
She

ll

Hac
kB

ac
k

Im
ule

r

Ja
nic

ab

KeR
an

ge
rR

an
so

m

Ke
yd
na
p

Ke
ylo
gg
er

KitM

Kom
plex

La
m

ad
ai

La
oS

hu

La
ve

ra
ge

M
ac

Con
tro

l

M
ac

Dow
nlo

ad

M
ac

Snif
fer
M

as
k

M
or

cu
t

Net
W

eir
d
Non

e

Oce
an

Lo
tu

s
Oka

z
Ol
yx

Op
ini
on
Sp
y

Pint
siz

ed

Quim
itc

hin

Res
he

Rev
ir

Ru
bil
yn

Ru
by
lin

She
llC

od
e
TP

wn
To

re
d
Tp

wn

Tro
jan

Ts
un

am
i

Ve
nt

ir

W
ire

Lu
rk

er

W
ire

ne
t

XLS
Cm

d

Xco
deG

ho
st

Ya
ho

oF
loo

der

iM
un

iza
to

r

iS
er

vic
es

iW
or

m

los
elo

se

Family
Figure 4. Malicious sample distribution by VirusTotal detection names.

Note: The biggest bar at the far left hand side indicates the samples with no detection or only has a generic name.

13 | Generative Malware Outbreak Detection

•	 Similar instruction distribution: The samples have similar instruction distribution statistics.

•	 Minor local variations: The modification of a sample’s instruction sequence is restricted to one or

more local areas.

•	 Translation invariant: Most part of the sample’s code distribution is identical to the rest of them within

the same cluster when the code is translated or shuffled.

The properties for unqualified malware families are summarized as follows:

•	 Mismatched function-wise distribution: Neither similar sample length nor similar statistical distribution

qualifies a sample to become a member of a cluster. Samples must also match function-wise statistical

distributions.

•	 Substantial difference in code distribution size: Although a partial match suggests a variant, it is

desirable to have the size of similar code distribution significantly larger than the variations. It’s

because the clusters can drift over repetitive trainings across longer periods of time, which can

potentially cause false positives due to mixed distributions.

In order to find out the category for the latent representation, HDBSCAN clustering algorithm was used,

which shows the most appealing performance against unknown numbers of clusters.28 The samples

categorized as a noise by HDBSCAN are classified as benign because this indicates that no similar cluster

was found in the test sample. The overall flow chart is illustrated in Figure 5.

sample

Feature Extractor

feature

AAE

z

HDBSCAN

class

call, push, push, xor, mov, mov, ...

38, 99, 99, 186, 8, 8, ...

0.3, 0.5, 0.91, 0.12

class 7

Figure 5. Overall pipeline from a sample to its predicted class number (Examples are shown on the right)

14 | Generative Malware Outbreak Detection

B. Result
We found that using raw instruction sequence for classification models significantly reduces accuracy.

Gradient boosting, Support Vector Machine, and Random Forest models were chosen as baseline with

the feature implemented using n-gram29 over the instruction sequence. Clustering models such as KNN

were not included in the baseline model since they need a decent number of training samples to work,

which is different to the problem setting put forward in this research.

As shown in Table 1, traditional classifiers perform reasonably well even for a training dataset that consists

of a single sample for each class. The proposed model, aae-sh, which is adversarial autoencoder combined

with semantic hashing, shows reasonably high detection accuracy against malicious samples. However,

we found that all traditional classification models catastrophically fail on benign samples, recording 100%

false positives. With the training set of only core malicious samples by which outbreaks are simulated,

the traditional classification methods do not work at all. On the contrary, aae-sh, records a 91% accuracy

over benign samples with this training setting.

Model
Malicious

(3,254)
Benign
(9,981)

gradient-boosting-1gram 0.935 0.000

gradient-boosting-2gram 0.936 0.000

gradient-boosting-3gram 0.931 0.000

svm-1gram 0.934 0.000

svm-2gram 0.944 0.000

svm-3gram 0.968 0.000

randomforest-1gram 0.983 0.000

randomforest-2gram 0.987 0.000

randomforest-3gram 0.989 0.000

aae-sh 0.959 0.910

Table 1. Detection rate against malicious and benign samples for various models.

C. Analysis
Visual analysis of the families detected by aae-sh not only shows similar instruction sequences with

variations within the family but it also does not exhibit undesirable properties described in the previous

subsection. Figure 6 shows aae-sh correctly identifying malware variants whose major feature mass is

identical across all samples in the cluster while variations occur in many different ways. These samples are

the variants of malware named Blackhole or Freezer. It becomes clear that the names from VirusTotal30 do

not necessarily match the malware clusters produced by aae-sh because human analysts tag detection

names based on analyst-specific heuristics, whereas the proposed approach in this paper derives the

detection purely from the instruction sequence pattern.

15 | Generative Malware Outbreak Detection

Figure 6. Visualization of the instruction sequences of Blackhole or Freezer samples identified by aae-sh

Note: The X-axis represents the feature while theY-axis represents the sample number.

Figure 7 shows the detected cluster 49 that contains many Flashback variants. Note that aae-sh detected

the samples of different lengths as long as the instruction sequences are similar.

Figure 7. Visualization of the instruction sequences of malware samples

within cluster 49 identified by aae-sh

Note: The X-axis represents the feature while the Y-axis represents the sample number.

16 | Generative Malware Outbreak Detection

Cluster 49 (nsamples=836)
 FlashBack.AF (2 samples)
 FlashBack.L (344 samples)
 FlashBack.M (5 samples)
 FlashBack.Q (2 samples)
 Flashback.E (1 sample)
 Flashback.J (1 sample)
 Flashback.K (1 sample)
 Flashback.L (1 sample)
 Flashback.M (10 samples)
 Flashback.N (7 samples)
 Flashback.O (1 sample)
 Flashback.P (1 sample)
 Flashback.Q (1 sample)
 Trojan-Downloader.Flashfake.ab (12 samples)
 Unknown (447 samples)

Figure 8. VirusTotal detection names for the samples in cluster 49 that are visualized in Figure 6

Figure 8 shows redacted VirusTotal detection names for the samples in Figure 7. It is notable that 447

samples either had no names or had generic names.

17 | Generative Malware Outbreak Detection

V. Conclusion
The research shows that the generative power of adversarial autoencoder creates latent representations

that can be used to identify similar samples with minimal number of training samples. It turned out that

some malware families such as Flashback reuse the same piece of code repeatedly across their variants,

and this subsequently enables the adversarial autoencoder to identify the family effectively. In addition,

the model was found to be effective in discovering multiple variants across heterogeneous malware

families that share similar instruction-wise characteristics.

18 | Generative Malware Outbreak Detection

References

1.	 Fanglu Guo, Peter Ferrie, and Tzi-Cker Chuiueh. (2008). “A study of the packer problem and its solutions.” Heidelberg, DE:

Springer-Verlag Berlin.

2.	 Igor Santos, et al. (2009). ICEIS. “N-grams-based File Signatures for Malware Detection.” Last accessed on 16 January 2019

at https://pdfs.semanticscholar.org/1ba4/d1666d6d9ab784063202d78fba1838ca03cf.pdf.

3.	 Abdurrahman Pektaş, Mehmet Eriş, and Tankut Acarman. (2011). The Fifth International Conference on Emerging Security

Information, Systems and Technologies. “Proposal of n-gram based algorithm for malware classification.” Last accessed on

16 January 2019 at https://www.thinkmind.org/download.php?articleid=securware_2011_1_30_30099.

4.	 Nwokedi Idika and Aditya P. Mathur. (2007). “A survey of malware detection techniques.” Last accessed on 16 January 2019

at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.4594&rep=rep1&type=pdf.

5.	 Sachin Jain and Yogesh Kumar Meena. (2011). 5th International Conference on Information Processing, ICIP 2011 Bangalore,

India, August 5-7, 2011 Proceedings. “Byte level n-gram analysis for malware detection.” Heidelberg, DE: Springer-Verlag

Berlin.

6.	 Wikimedia Foundation Inc. (n.d.) Wikipedia. “Histogram Matching.” Last accessed on 16 January 2019 at https://en.wikipedia.

org/wiki/Histogram_matching.

7.	 Joshua Saxe and Konstantin Berlin. “Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program

Features.” In 10th International Conference on Malicious and Unwanted Software (MALWARE), 20 October 2015.

8.	 Yuancheng Li, Rong Ma, and Runhai Jiao. (2015). “A Hybrid Malicious Code Detection Method based on Deep Learning.” Last

accessed on 28 January 2019 at https://pdfs.semanticscholar.org/45ba/f042f5184d856b04040f14dd8e04aa7c11f6.pdf.

9.	 Eli (Omid) David and Nathan Netanyahu. “DeepSign: Deep learning for automatic malware signature generation and

classification.” In 10th International Conference on Malicious and Unwanted Software (MALWARE), pages 1-8, 12 July 2015.

10.	 George Dahl, Jack Stokes, Li Deng, and Dong Yu. (2013). “Large-Scale Malware Classification Using Random Projections and

Neural Networks.” In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3422-3426, 26 May

2013.

11.	 Andrew Davis and Matt Wolff. (2015). Blackhat. “Deep Learning on Disassembly Data.” Last accessed on 28 January 2019 at

https://www.blackhat.com/docs/us-15/materials/us-15-Davis-Deep-Learning-On-Disassembly.pdf.

12.	 Sean Park. (2016). “Fighting Metamorphism using Deep Neural Network with Fourier.” Last accessed on 28 January 2019

at https://ruxcon.org.au/assets/2016/slides/Fighting%20Metamorphism%20using%20Deep%20Learning%20with%20

Fourier%20v1.4.pdf.

13.	 Ilsun You and Kangbin Yim. “Malware Obfuscation Techniques: A Brief Survey.” In 2010 International Conference on Broadband,

Wireless Computing, Communication and Application, pages 297-300, 4 November 2010.

14.	 Andreas Moser, Christopher Kruegel, and Engin Kirda. “Limits of Static Analysis for Malware Detection.” In Limits of Static

Analysis for Malware Detection, pages 421-430, 10 December 2007.

15.	 Chris Eagle. (2011). The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassembler. United States, CA: No

Starch Press.

16.	 Ilsun You and Kangbin Yim. “Malware Obfuscation Techniques: A Brief Survey.” In 2010 International Conference on Broadband,

Wireless Computing, Communication and Application, pages 297-300, 4 November 2010.

https://pdfs.semanticscholar.org/1ba4/d1666d6d9ab784063202d78fba1838ca03cf.pdf
https://www.thinkmind.org/download.php?articleid=securware_2011_1_30_30099
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.4594&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Histogram_matching
https://en.wikipedia.org/wiki/Histogram_matching
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7405773
https://pdfs.semanticscholar.org/45ba/f042f5184d856b04040f14dd8e04aa7c11f6.pdf
https://ieeexplore.ieee.org/author/37071179500
https://ieeexplore.ieee.org/author/37269667100
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7405773
https://www.blackhat.com/docs/us-15/materials/us-15-Davis-Deep-Learning-On-Disassembly.pdf
https://ruxcon.org.au/assets/2016/slides/Fighting%20Metamorphism%20using%20Deep%20Learning%20with%20Fourier%20v1.4.pdf
https://ruxcon.org.au/assets/2016/slides/Fighting%20Metamorphism%20using%20Deep%20Learning%20with%20Fourier%20v1.4.pdf
https://ieeexplore.ieee.org/author/37283981400
https://ieeexplore.ieee.org/author/37298605700

19 | Generative Malware Outbreak Detection

17.	 Ian Goodfellow, et al. “Generative Adversarial Nets.” In Advances in Neural Information Processing Systems 2014, pages 2672-

2680, June 2014.

18.	 Jonathan Masci, Ueli Meier, Dan Cireşan, Jürgen Schmidhuber. “Stacked Convolutional Auto-encoders for Hierarchical Feature

Extraction.” In Artificial Neural Networks and Machine Learning–ICANN 2011, pages 52-59, September 2014.

19.	 Ilsun You and Kangbin Yim. “Malware Obfuscation Techniques: A Brief Survey.” In 2010 International Conference on Broadband,

Wireless Computing, Communication and Application, pages 297-300, 4 November 2010.

20.	 Yizhe Zhang, et al. “Deconvolutional Paragraph Representation Learning.” In Advances in Neural Information Processing

Systems 2017, August 2017.

21.	 Alireza Makhzani, et al. (18 November 2015). Arxiv. “Adversarial Autoencoders.” Last accessed on 29 January 2019 at https://

arxiv.org/abs/1511.05644.

22.	 Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. (30 May 2017). Arxiv. “The Numerics of GANs.” Last accessed on 1

February 2019 at https://arxiv.org/abs/1705.10461.

23.	 Ibid.

24.	 Ferenc Huszár. (5 October 2017). Inference. “GANs are Broken in More than One Way: The Numerics of GANs.” Last accessed

on 1 February 2019 at http://www.inference.vc/my-notes-on-the-numerics-of-gans/.

25.	 Diederik Kingma and Jimmy Ba. (22 December 2014). Arxiv. “Adam: A Method for Stochastic Optimization.” Last accessed on

1 February 2019 at https://arxiv.org/abs/1412.6980.

26.	 Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. (n.d.) Computer Science University of Toronto. “Neural Networks for

Machine Learning Lecture 6” Last accessed on 1 February 2019 at http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_

slides_lec6.pdf.

27.	 Ruslan Salakhutdinov and Geoffrey Hinton. “Semantic Hashing.” In International Journal of Approximate Reasoning, pages

969-978, 7 July 2009.

28.	 Leland McInnes and John Healy. “Accelerated Hierarchical Density Based Clustering.” In 2017 IEEE International Conference

on Data Mining Workshops (ICDMW), pages 33-42, 1 November 2017.

29.	 Abdurrahman Pektaş, Mehmet Eriş, and Tankut Acarman. (2011). The Fifth International Conference on Emerging Security

Information, Systems and Technologies. “Proposal of n-gram based algorithm for malware classification.” Last accessed on

16 January 2019 at https://www.thinkmind.org/download.php?articleid=securware_2011_1_30_30099.

30.	 Google Inc. Virus Total. Last accessed on 1 February 2019 at https://virustotal.com.

31.	 Razvan Pascanu, Jack Stokes, Hermineh Sanossian, Mady Marinescu, Anil Thomas. “Malware classification with recurrent

networks.” In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1916-1920,

19 April 2015.

https://arxiv.org/abs/1511.05644
https://arxiv.org/abs/1511.05644
https://arxiv.org/abs/1705.10461
http://www.inference.vc/my-notes-on-the-numerics-of-gans/
https://arxiv.org/abs/1412.6980
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.thinkmind.org/download.php?articleid=securware_2011_1_30_30099
https://virustotal.com

©2019 by Trend Micro, Incorporated. All rights reserved. Trend Micro
and the Trend Micro t-ball logo are trademarks or registered trademarks
of Trend Micro, Incorporated. All other product or company names may
be trademarks or registered trademarks of their owners.

TREND MICROTM RESEARCH
Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and supporting

efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in vulnerability disclosures, and

publishes innovative research on new threats techniques. We continually work to anticipate new threats and deliver thought-provoking

research.

www.trendmicro.com

